Linkage analysis using principal components of gene expression data
نویسندگان
چکیده
منابع مشابه
Linkage analysis using principal components of gene expression data
The goal of this paper is to investigate the effect of using principal components as a data reduction method for expression data in linkage analysis. We used 45 probes normalized using the Affymetrix Global Scaling that had evidence of high heritability to estimate the first 10 principal components (PC). A genome-wide linkage scan was performed on the 45 expression values and the 10 PCs using 2...
متن کاملImprove Survival Prediction Using Principal Components of Gene Expression Data
The purpose of many microarray studies is to find the association between gene expression and sample characteristics such as treatment type or sample phenotype. There has been a surge of efforts developing different methods for delineating the association. Aside from the high dimensionality of microarray data, one well recognized challenge is the fact that genes could be complicatedly inter-rel...
متن کاملLinkage and association analyses of principal components in expression data
Performing linkage and association analyses on a large set of correlated data presents an interesting set of problems. In the current setting, we have 3554 expression levels from lymphoblastoid cell lines in 194 individuals from 14 three-generation Utah CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees. We formed multivariate expression phenotypes from six sets of genes. These consisted o...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملPrincipal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
Principal components analysis (PCA) is a common unsupervised method for the analysis of gene expression microarray data, providing information on the overall structure of the analyzed dataset. In the recent years, it has been applied to very large datasets involving many different tissues and cell types, in order to create a low dimensional global map of human gene expression. Here, we reevalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Proceedings
سال: 2007
ISSN: 1753-6561
DOI: 10.1186/1753-6561-1-s1-s79